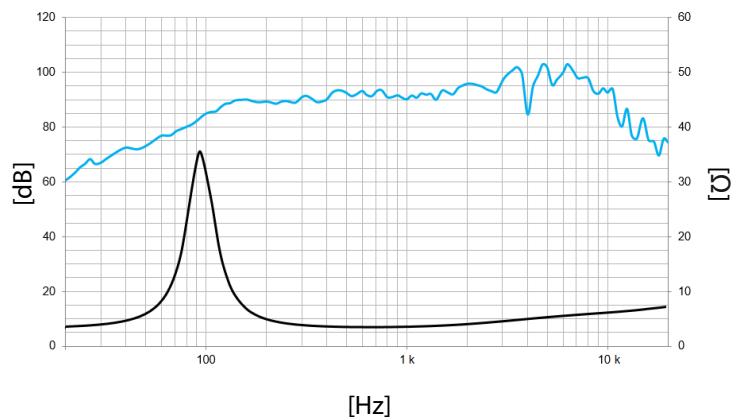


TECHNICAL SPECIFICATIONS

Nominal diameter	165 mm	6,5 in
Rated impedance	4 Ω	
Minimum impedance	3,6 Ω	
Power capacity¹	100 W _{AES}	
Program power²	200 W	
Sensitivity	95 dB 1W / 1m @ Z _N	
Frequency range	100 - 10.000 Hz	
Voice coil diameter	38,1 mm	1,5 in
BL factor		9,1 N/A
Moving mass		0,012 kg
Voice coil length		7,5 mm
Air gap height		6 mm

THIELE-SMALL PARAMETERS³


Resonant frequency, f_r	94 Hz
D.C. Voice coil resistance, R_e	3,3 Ω
Mechanical Quality Factor, Q_{ms}	2,8
Electrical Quality Factor, Q_{es}	0,29
Total Quality Factor, Q_{ts}	0,26
Equivalent Air Volume to C_{ms}, V_{as}	6,3 l
Mechanical Compliance, C_{ms}	229 μm / N
Mechanical Resistance, R_{ms}	2,6 kg / s
Efficiency, η₀	1,8 %
Effective Surface Area, S_d	0,014 m ²
Maximum Displacement, X_{max}⁴	3 mm
Displacement Volume, V_d	42 cm ³
Voice Coil Inductance, L_e	0,2 mH

MATERIALS

Voice coil winding	Copper
Voice coil former	Glass fiber
Spider	Polycotton
Magnet	Neodymium
Cone	Paper
Frame	Steel

MOUNTING INFORMATION

Overall diameter	166 mm	6,5 in
Bolt circle diameter	156 mm	6,1 in
Baffle cutout diameter:		
- Front mount	142 mm	5,6 in
Depth	72 mm	2,8 in
Net weight	1,2 kg	2,6 lb
Shipping weight	1,3 kg	2,9 lb

Note: On axis frequency response measured with loudspeaker standing on infinite baffle in anechoic chamber, 1W @ 1m

Notes:

This datasheet is done with the measurement of a laboratory prototype. Small differences may appear when the driver is transferred to the production line and manufactured in big quantities.

¹ The power capacity is determined according to AES2-1984 (r2003) standard.

² Program power is defined as power capacity + 3 dB.

³ T-S parameters are measured after an exercise period using a preconditioning power test. The measurements are carried out with a velocity-current laser transducer and will reflect the long term parameters (once the loudspeaker has been working for a short period of time).

⁴ The X_{max} is calculated as (L_{vc} · H_{ag})/2 + (H_{ag}/3,5), where L_{vc} is the voice coil length and H_{ag} is the air gap height.